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Atmospheric Turbulence 
 

Lecture 2, ASTR 289 
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January 14, 2016 
 
 Please remind me to take a break at 10:45 or so 
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Observing through Earth’s Atmosphere 

•  "If the Theory of making Telescopes could at length be 
fully brought into Practice, yet there would be certain 
Bounds beyond which telescopes could not perform … 

•  For the Air through which we look upon the Stars, is in 
perpetual Tremor ...  

•  The only Remedy is a most serene and quiet Air, such as 
may perhaps be found on the tops of the highest 
Mountains above the grosser Clouds."  

Isaac Newton 



Page 3     

Newton was right! 

Summit of Mauna Kea, Hawaii (14,000 ft) 
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Atmospheric Turbulence: Main Points 

•  The dominant locations for index of refraction fluctuations 
that affect astronomers are the atmospheric boundary 
layer and the tropopause (we will define these) 

•  Kolmogorov turbulence is a specific form of incompressible 
turbulence: derived from dimensional analysis, setting 
heat flux in = heat flux in turbulence 

•  Atmospheric turbulence (mostly) obeys Kolmogorov 
statistics 

•  Structure functions (we will define these!) derived from 
Kolmogorov turbulence are              where   

•  All else will follow from these points! 

∝ r2/3
 r =
!x1 −
!x2
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Atmospheric Turbulence Issues for AO 

• What determines the index of refraction in air? 

• Origins of turbulence in Earth’s atmosphere 

• Energy sources for turbulence 

• Kolmogorov turbulence models 
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Outline of lecture 

• Physics of turbulence in the Earth’s atmosphere 

–  Location 

–  Origin 

–  Energy sources 

• Mathematical description of turbulence 

– Goal: build up to derive an expression for r0, 
based on statistics of Kolmogorov turbulence 
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Fluctuations in index of refraction are 
due to temperature fluctuations 

• Refractivity of air 

 
where P = pressure in millibars, T = temp. in K,  λ in microns 
n = index of refraction.  Note VERY weak dependence on λ. 

• Temperature fluctuations  à index fluctuations  

 
 
(pressure is constant, because velocities are highly sub-sonic -- 

pressure differences are rapidly smoothed out by sound wave 
propagation) 

N ≡ (n −1) ×106 = 77.6 1+ 7.52 10−3

λ 2

⎛
⎝⎜

⎞
⎠⎟
×

P
T

⎛
⎝⎜

⎞
⎠⎟

δN ≅ −77.6 × (P / T 2 )δT
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Turbulence arises in many places (part 1) 

stratosphere!

Heat sources w/in dome"

boundary layer!
~ 1 km"

tropopause!
10-12 km"

wind flow around dome!
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Two examples of measured atmospheric 
turbulence profiles 

Credit: cute-SCIDAR group, 
J. J. Fuensalida, PI 
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Turbulence within dome: “mirror seeing” 

•  When a mirror is warmer 
than dome air, convective 
equilibrium is  reached.  

•  Remedies: Cool mirror itself, 
or blow air over it.  

To control mirror temperature: dome air conditioning (day), blow air on 
back (night), send electric current through front Al surface-layer to 
equalize temperature between front and back of mirror 

credit: M. Sarazin credit: M. Sarazin 

convective 
cells are bad 
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Turbulence arises from wind flowing 
over the telescope dome 

Computational fluid dynamics simulation (D. de Young)  

Top view Side view 

Wind 
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Turbulent boundary layer has largest 
effect on “seeing” 

•  Wind speed must be zero at ground, must equal vwind 
several hundred meters up (in the “free atmosphere”) 

•  Adjustment takes place at bottom of boundary layer 
–  Where atmosphere feels strong influence of earth’s surface 
–  Turbulent viscosity slows wind speed to zero at ground 

•  Quite different between day and night 
–  Daytime: boundary layer is thick (up to a km), dominated by 

convective plumes rising from hot ground.  Quite turbulent. 
–  Night-time: boundary layer collapses to a few hundred 

meters, is stably stratified.  See a few “gravity waves.”  
Perturbed if winds are high. 
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Convection takes place when 
temperature gradient is steep 

•  Daytime: ground is warmed by sun, air is cooler  

•  If temp. gradient between ground and ~ 1 km is steeper 
than “adiabatic gradient,” warm volume of air raised 
upwards will have cooler surroundings, will keep rising 

•  These warm volumes of air carry thermal energy upwards 

UCAR large eddy simulation 
of convective boundary layer 
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Boundary layer is much thinner at night: 
Day ~ 1 km, Night ~ few hundred meters  

Surface layer: where 
viscosity is largest effect Daytime convection 
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Implications: solar astronomers vs. 
night-time astronomers 

• Daytime: Solar astronomers have to work with 
thick and messy turbulent boundary layer 

• Night-time: Less total turbulence, but boundary 
layer is still single largest contribution to “seeing” 

• Neutral times: near dawn and dusk 
– Smallest temperature difference between 

ground and air, so wind shear causes smaller 
temperature fluctuations 
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Concept Question 

•  Think of as many reasons 
as you can why high 
mountain tops have the 
best “seeing” (lowest 
turbulence).  Prioritize 
your hypotheses from 
most likely to least likely. 

 

•  Use analogous reasoning 
to explain why the high 
flat  Atacama Desert in 
Chile also has excellent 
“seeing”. 

Mauna Kea, Hawaii	

Atacama Desert, Chile	
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Strong wind 
  shear at 
tropopause 

Turbulence in the “free atmosphere” 
above the boundary layer 

Temperature gradient at low altitudes è wind shear will 
produce index of refraction fluctuations 
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Wind shear mixes layers with different 
temperatures 

• Wind shear à Kelvin Helmholtz instability 

 
•  If two regions have different temperatures, 

temperature fluctuations δT will result 
• T fluctuations è index of refraction fluctuations 

Computer 
simulation 

by 
Ceniceros 
and Roma, 

UCSB 



Page 19     

Sometimes clouds show great Kelvin-
Helmholtz vortex patterns 

A clear sign of wind shear 
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Leonardo da Vinci’s view of turbulence 
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Kolmogorov turbulence in a nutshell 

Big whorls have little whorls,  

Which feed on their velocity;  

Little whorls have smaller whorls, 

And so on unto viscosity.  

 

 L. F. Richardson (1881-1953) 
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Kolmogorov turbulence, cartoon 

Outer scale L0	

ground	

Inner scale l0	

hν 
convection	

solar	

hν 

Wind shear	



Page 23     

Kolmogorov turbulence, in words 

•  Assume energy is added to system at largest scales - 
“outer scale” L0 

•  Then energy cascades from larger to smaller scales 
(turbulent eddies “break down” into smaller and smaller 
structures).   

•  Size scales where this takes place: “Inertial range”. 

•  Finally, eddy size becomes so small that it is subject to 
dissipation from viscosity.  “Inner scale” l0 

•  L0 ranges from 10’s to 100’s of meters; l0 is a few mm 
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Breakup of Kelvin-Helmholtz vortex 

•  Start with large coherent vortex structure, as is 
formed in K-H instability 

•  Watch it develop smaller and smaller substructure 

•  Analogous to Kolmogorov cascade from large eddies to 
small ones  

•  http://www.youtube.com/watch?v=hUXVHJoXMmU 
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How large is the Outer Scale? 

•  Dedicated instrument, the Generalized Seeing Monitor 
(GSM),  built by Dept. of Astrophysics, Nice Univ.) 
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Outer Scale ~ 10 - 40 m, from Generalized 
Seeing Monitor measurements 

•  F. Martin et al. , Astron. Astrophys. Supp. v.144,  p.39, June 2000 
•  Nice comparison of different methods for measuring outer scale is at 

http://core.ac.uk/download/files/200/4872744.pdf 
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Concept Question 

• What do you think really determines the outer 
scale in the boundary layer?  At the tropopause? 

• Hints: 
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The Kolmogorov turbulence model, 
derived from dimensional analysis (1) 

•  v = velocity, ε = energy dissipation rate per unit mass, 
  = viscosity, l0 = inner scale, l = local spatial scale 

•  Energy/mass  =  v2/2  ~ v2 

•  Energy dissipation rate per unit mass  

ε  ~ v2/τ  =  v2 / (l / v)  = v3 / l     
v ~ (ε l )1/3 

Energy   v2 ~ ε 2/3  l 2/3 
 

 

ν
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Kolmogorov Turbulence Model (2) 

•  1-D power spectrum of velocity fluctuations: k = 2π / l  

  Φ(k) Δk   ~  v2   ~   ( ε l )2/3   ~  ε 2/3 k -2/3   or, dividing by k, 

   Φ(k)  ~ k -5/3  (one dimension) 

•  3-D power spectrum: energy content ~  Φ3D(k) k2 Δk 

•   Φ3D(k) ~ Φ /  k 2   or  Φ3D(k)  ~ k -11/3 (3 dimensions) 

•  For a more  rigorous calculation: V. I. Tatarski, 1961, “Wave 
Propagation in a Turbulent Medium”, McGraw-Hill, NY 
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Lab experiments agree 

•  Air jet, 10 cm 
diameter 
(Champagne, 1978) 

•  Assumptions: 
turbulence is 
incompressible, 
homogeneous, 
isotropic, stationary 
in time 

Slope -5/3 

 L0	

 l0	
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The size of the inertial range is related 
to the “Reynolds number” 

•  Outer scale of turbulence: L0 

–  Size of the largest turbulent eddy 

•  Inner scale of turbulence: l0 

–  Below this scale, collisional viscosity wipes out any 
remaining velocity gradients 

•  Can show that 

•  “Fully developed turbulence”: Re >  5 x 103 (or more) 

 

L0

l0

≈ vL0

ν
⎛
⎝⎜

⎞
⎠⎟

3/4

≡ Re( )3/4 1

where the Reynolds number Re ≈ inertial force
viscous force
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What does a Kolmogorov distribution of 
phase look like? 

Position (meters) 

Po
si

ti
on

 (
m

et
er

s)
 

•  A Kolmogorov “phase 
screen” courtesy of 
Don Gavel 

•  Shading (black to 
white) represents 
phase differences of 
~1.5 µm  

•  You can see the many 
spatial scales 

•  r0 = 0.4 meter 



Page 33     

Structure functions are used a lot in AO 
discussions.  What are they? 

•  Mean values of meteorological variables change with time 
over minutes to hours.  Examples:  T, p, humidity 

•  If   f(t)   is a non-stationary random variable,  

 Ft(τ)  =   f ( t +τ) - f ( t)    is a difference function that 
is stationary for small  τ , varies for long τ. 

•  Structure function is measure of intensity of fluctuations 
of   f (t)   over a time scale less than or equal to τ : 

   Df(τ)  =  < [ Ft(τ) ]2>  =  < [ f (t + τ) - f ( t) ]2 >  

•                          mean square 
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Can also use phase structure function (1) 

 
Dφ (r ) ≡ φ(x) −φ(x + r ) 2 = dx 

−∞

∞

∫ φ(x) −φ(x + r ) 2

Plot of phase at different positions 
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Sidebar: different units to express phase 

•  Φ   Phase expressed as an angle in radians  

•  Φ = (k� x)  - ωt   for a traveling wave 

•  Φ   in units of length? Φ ~ k x, or Φ/k ~ x 

•  Φ   in units of wavelength? Φ ~ k x ~ 2π(x/λ) 
–  So when Φ ~ 2π, x ~ λ. “One wave” of phase. 
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More about phase structure function (2) 

•  For 1 micron light, can 
get close to diffraction 
limited image if phase is 
within < 1 micron 

•  Grey line: same phase, 
shifted by 1 meter 

 
•  Grey line is analytic 

version of structure 
function for Kolmogorov 
turbulence 
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Structure function for atmospheric 
fluctuations, Kolmogorov turbulence 

•  Scaling law  we derived earlier:  v2 ~ ε2/3 l2/3  ~ r 2/3 where 
r is spatial separation between two points 

•  Heuristic derivation: Velocity structure function ~ v2  

      

     

•  Here Cv
2 = a constant to clean up “look” of the equation. 

Describes the strength of the turbulence. 

Dv (r) ≡ v(x) − v(x + r)[ ]2 ∝ r2 /3    or   Dv (r) = Cv
2r2 /3
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Derivation of Dv from dimensional 
analysis (1) 

•  If turbulence is homogenous, isotropic, stationary 

where f is a dimensionless function of a 
dimensionless argument. 

• Dimensions of α are v2, dimensions of β are 
length, and they must depend only on  ε  and  ν  
(the only free parameters in the problem). 

[ ν ] ~ cm2 s-1      [  ε  ] ~ erg s-1 gm-1 ~ cm2 s-3  

Dv (x1, x2 ) = α × f (| x1 − x2 | /β)
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Derivation of Dv from dimensional 
analysis (2) 

• The only combinations of  ε and ν with the right 
dimensions are 

α = ν1/2ε1/2

dimensions cm s−1/2 × cm s−3/2 = (cm / s)2

and  β = ν 3/4ε−1/4

dimensions (cm3/2  s−3/4 ) × (s3/4cm−1/2 ) = cm

Dv = ν
1/2ε1/2 f (| x1 − x2 | /ν 3/4ε −1/4 )

For  f  to be dimensionless, must have f (x) = x2/3

⇒ Dv = ε 2/3 | x1 − x2 |2/3≡ Cv
2 | x1 − x2 |2/3
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What about temperature and index of 
refraction fluctuations? 

• Temperature fluctuations are carried around 
passively by velocity field (incompressible fluids).   

• So T and N  have structure functions similar to v: 

 

 DT ( r ) = < [ T (x ) - T ( x + r ) ]2 > = CT
2  r 2/3 

 

  DN ( r ) = < [ N (x ) - N ( x + r ) ]2 > = CN
2  r 2/3 
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How do you measure index of refraction 
fluctuations in situ? 

• Refractivity 

•  Index fluctuations 

 

• So measure δT , p, and T; calculate CN
2 

N = (n −1) ×106 = 77.6 × (P / T )

δN = −77.6 × (P / T 2 )δT

CN = ∂N / ∂T( )CT = −77.6 × P / T 2( )CT

CN
2 = 77.6P / T 2( )2

CT
2
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Simplest way to measure CN
2 is to use 

fast-response thermometers 

DT ( r )  =  < [ T (x ) - v ( T + r ) ]2 >  =  CT
2  r 2/3 

• Example: mount fast-response temperature 
probes at different locations along a bar: 

    X      X        X     X   X X 

• Form spatial correlations of each time-series T(t) 
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Assumptions of Kolmogorov turbulence 
theory 

•  Medium is incompressible (speeds are highly sub-sonic) 

•  External energy is input on largest scales (only), 
dissipated on smallest scales (only) 
–  Smooth cascade 

•  Valid only in inertial range  l <<  L0  

•  Turbulence is 
–  Homogeneous  
–  Isotropic 

•  In practice, Kolmogorov model works surprisingly well! 

Questionable	
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Typical values of CN
2 

•  Index of refraction structure function 

          DN ( r )  =  < [ N (x ) - N ( x + r ) ]2 >  =  CN
2  r 2/3 

•  Night-time boundary layer:  CN
2 ~ 10-13 - 10-15   m-2/3  

10-14	

Paranal, Chile, VLT	
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Turbulence profiles from SCIDAR 

Eight minute time period (C. Dainty, NUI) 

Siding Spring, Australia	 Starfire Optical Range, 
Albuquerque NM	
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Atmospheric Turbulence: Main Points 

•  Dominant locations for index of refraction fluctuations: 
atmospheric boundary layer and tropopause 

•  Atmospheric turbulence (mostly) obeys Kolmogorov 
statistics 

•  Kolmogorov turbulence is derived from dimensional 
analysis (heat flux in = heat flux in turbulence) 

•  Structure functions derived from Kolmogorov turbulence: 

  

•  All else will follow from these points! 

DN (r) ≡  N(x) − N(x + r)[ ]2 ∝  r2 /3    or   DN (r) = CN
2 r2 /3



Page 47    	

Part 2: Effect of turbulence on spatial 
coherence function of light 

• We will use structure functions D ~ r2/3  
to calculate various statistical properties of 
light propagation thru index of refraction 
variations 

• I will outline calculation in class. Reading in 
Section 4: Quirrenbach goes into gory 
detail. I will ask you to write down the full 
analysis in your homework. 
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Definitions - Structure Function and 
Correlation Function 

• Structure function: Mean square difference 

 
 

• Covariance function: Spatial correlation of a 
function with itself 

 
Dφ (r ) ≡ φ(x) −φ(x + r ) 2 = dx 

−∞

∞

∫ φ(x) −φ(x + r ) 2

 
Bφ (r ) ≡ φ(x + r )φ(x) = dx 

−∞

∞

∫ φ(x + r )φ(x)
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Relation between structure function and 
covariance function 

•  A problem on future homework: 

–  Derive this relationship 

–  Hint: expand the product in the definition of Dϕ ( r ) 
and assume homogeneity to take the averages 

 
Dφ (r ) = 2 Bφ (0) − Bφ (r )⎡⎣ ⎤⎦

Structure function Covariance function 
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Definitions - Spatial Coherence Function 

•  Spatial coherence function of field is defined as 
        Covariance for complex fn’s 

»            is a measure of how “related” the field Ψ  is at one 
position (e.g. x) to its values at neighboring positions (say x + 
r ). 

•    

 For light wave Ψ = exp[iφ(x)], phase is φ(x) = kz −ωt

 Bh (!r ) ≡ Ψ(!x)Ψ*(!x + !r )

 Bh (r )

 

Since Ψ(!x) = exp[iφ("x)] and Ψ*(!x) = exp[−iφ("x)],
Bh ("r ) = exp i[φ("x)−φ("x + "r )]
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Now evaluate spatial coherence 
function Bh (r)  

•  For a Gaussian random variable      with zero mean, it can 
be shown that 

         
         
  

                                                                

•  So 

 

•  So finding spatial coherence function Bh (r)  amounts to 
evaluating the structure function for phase Dϕ ( r ) ! 

exp iχ = exp − χ 2  /  2( )

 

Bh (!r ) = exp i[φ(!x)−φ(!x + !r )]

          = exp − φ(!x)−φ(!x + !r ) 2 / 2⎡
⎣

⎤
⎦ ≡ exp −Dφ (!r ) / 2⎡⎣ ⎤⎦

χ
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Solve for  Dϕ( r )  in terms of the 
turbulence strength CN

2     (1) 

• We want to know  

• We will use the facts that  

 

• So we will need to know the phase covariance:  
 
Dφ (r ) = 2 Bφ (0) − Bφ (r )⎡⎣ ⎤⎦  
 
Bh (r ) = exp −Dφ (r ) / 2⎡⎣ ⎤⎦

 Bφ (r ) ≡ φ(x) φ(x + r )

Dφ (r)
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Solve for  Dϕ( r )  in terms of the 
turbulence strength CN

2     (2) 

• But                                  for a wave propagating 

vertically (in z direction) from height h to height 

h + δh. 

•   Here n(x, z) is the index of refraction. 

 

• Hence     
 
Bφ (r ) = k2 d ′z

h

h+δ h

∫ d ′′z
h

h+δ h

∫ n(x, ′z )n(x + r , ′′z )

 
φ(x) = k dz × n(x, z)

h

h+δ h

∫
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Solve for  Dϕ( r )  in terms of the 
turbulence strength CN

2     (3) 

• Change variables: 

• Then    

z = ′′z − ′z

 

Bφ (r ) = k2 d ′z
h

h+δ h

∫ dz n(x, ′z )n(x + r , ′z + z)
h− ′z

h+δ h− ′z

∫

         = k2 d ′z
h

h+δ h

∫ dz BN
h− ′z

h+δ h− ′z

∫ (r , z)

 
Bφ (r ) = k2δh dzBN

h− ′z

h+δ h− ′z

∫ (r , z) ≅ k2δh dzBN
−∞

∞

∫ (r , z)
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Solve for  Dϕ( r )  in terms of the 
turbulence strength CN

2     (4) 

•  Now we can evaluate phase structure function Dφ( r )  

 

Dφ (r ) = 2 Bφ (0) − Bφ (r )⎡⎣ ⎤⎦ = 2k2δh dz BN (0, z) − BN (r , z)[ ]
−∞

∞

∫

Dφ (r ) = 2k2δh dz  BN (0,0) − BN (r , z)[ ]− BN (0,0) − BN (0, z)[ ]  { }
−∞

∞

∫

Dφ (r ) = k2δh dz
−∞

∞

∫  DN (r , z) − DN (0, z)[ ]



Page 56    	

Solve for  Dϕ( r )  in terms of the 
turbulence strength CN

2     (5) 

•     

2
5
Γ(1 / 2)Γ(1 / 6)

Γ(2 / 3)
⎛
⎝⎜

⎞
⎠⎟

r5 /3 = 2.914 r5 /3

 

DN (r ) = CN
2  r  2 /3 = CN

2 r2 + z2( )1/3
  so

Dφ (r ) = k2δhCN
2 dz r2 + z2( )1/3

− z2 /3⎡
⎣

⎤
⎦

−∞

∞

∫

 
Dφ (r ) = 2.914 k2r5 /3CN

2  δh → 2.914 k2r5 /3 dh 
0

∞

∫ CN
2 (h)
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Skip a bunch of steps (you will write 
them out in your homework) 

For a slant path you can add 
factor ( sec θ )5/3  to account for 

dependence on zenith angle θ 

Concept Question: Note the scaling of the coherence 
function with separation, wavelength, turbulence 
strength.  Think of a physical reason for each. 

 
Bh (!r ) = exp −Dφ (!r ) / 2⎡⎣ ⎤⎦ = exp − 1

2
2.914 k2r5/3 dh CN

2 (h)
0

∞

∫
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Given the spatial coherence function, 
calculate effect on telescope resolution 

Outline of derivation: 

• Define optical transfer functions of telescope, 
atmosphere 

• Define r0 as the telescope diameter where the 
two optical transfer functions are equal 

– OTFtelescope = OTFatmosphere 

• Calculate expression for r0 
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Define optical transfer function (OTF) 

•  Imaging in the presence of imperfect optics (or 
aberrations in atmosphere): in intensity units 

  Image = Object       Point Spread Function  

 

    

•  Take Fourier Transform:  

• Optical Transfer Function = Fourier Transform of PSF 

convolved with 

⊗

 
I = O ⊗  PSF  ≡ dx  O(x − r )  PSF  (x)∫

 
F(I ) =  F(O)  F(PSF)

 
F(I ) =  F(O)  ×   OTF
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Examples of PSF’s and their 
Optical Transfer Functions 

Seeing limited PSF 

Diffraction limited PSF 

In
te

ns
ity
	

θ 

θ	

In
te

ns
ity
	

Seeing limited OTF 

Diffraction limited OTF 

λ / r0	

λ / r0	λ   / D	

λ / D	  r0 / λ	 D / λ	

 r0 / λ	 D / λ	

θ-1 

θ-1 
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Next time:  Derive  r0  and all the good 
things that come from knowing r0 

• Define r0 as the telescope diameter where the 
optical transfer functions of the telescope and 
atmosphere are equal 

• Use r0  to derive relevant timescales of turbulence 

• Use r0  to derive “Isoplanatic Angle”:   
– AO performance degrades as astronomical 

targets get farther from guide star 

   


